A CARYOPHYLLENE DERIVATIVE FROM FLEISCHMANNIA PYCNOCEPHALOIDES*

FERDINAND BOHLMANN†, AUTAR K. DHAR†, JASMIN JAKUPOVIC†, ROBERT M. KING‡ and HAROLD ROBINSON‡

† Institute for Organic Chemistry, Technical University Berlin, D-1000 Berlin 12, West Germany; ‡ Smithsonian Institution, Washington, DC 20560, U.S.A.

(Received 16 September 1980)

Key Word Index—Fleischmannia pycnocephaloides; F. multinervis; F. deborabellae; F. bohlmanniana; F. pycnocephala; Compositae; Eupatorieae; new caryophyllene derivative; 15-acetoxy-5,6-dihydro-6,7-dehydrocaryophyllen-5-one.

Abstract—A new caryophyllene derivative, 15-acetoxy-5,6-dihydro-6,7-dehydrocaryophyllen-5-one, has been isolated from the roots of *Fleischmannia pycnocephaloides*. Other *Fleischmannia* sp. yielded previously known compounds.

From the large genus Fleischmannia [1] (Compositae, tribe Eupatorieae) only a few species have been investigated chemically [2,3]. We have now investigated some further species. The aerial parts of F. pycnocephaloides (B. L. Robins.) K. et R. afforded germacrene D, lupeyl acetate and (+)-abienol (2), while the roots contained lupeyl acetate as well as sesamin (4) and the caryophyllene derivative 1. The structure was deduced from ¹H NMR investigations (Table 1). All signals were assigned by systematic spin decoupling and also after addition of different amounts of Eu(fod)₃.

Irradiation of the olefinic triplet allowed the assignment of the signals of H-8 and H-15. As the most shifted signals were those for 3-H, the signals for 4-H could be assigned by decoupling. The presence of a caryophyllene derivative was indicated by the typical signals of H-1, H-9 and H-10, which also could be assigned by decoupling after addition of shift reagent, while in CDCl_3 , as well as in $\mathrm{C}_6\mathrm{D}_6$, only some of these signals were detected as some of the signals were overlapped. Compound 1 thus has the structure 15-acetoxy-5,6-dihydro-6,7-dehydrocaryophyllen-5-one.

The roots of *F. multinervis* (Benth.) K. et R. only afforded germacrene D, sesamin (4) and the corresponding dimethoxy compound 5 [2]. The roots of *F. deborabellae* K. et R. only gave *p*-hydroxybenzoic acid, while the aerial parts contained communic acid (3) [4]. The roots of *F. bohlmanniana* K. et R. afforded coumarin, while the aerial parts gave germacrene D and lupeyl acetate together with further unidentified triterpenes. The aerial parts of *F. pycnocephala* (Less.) K. et R. afforded eupatoriochromene (6) [5] in addition to the previously isolated sesamin (4) [2].

The compounds now isolated show that sesamin-like compounds may be characteristic for the genus, though this type of lignan was isolated from very different groups of the Compositae.

EXPERIMENTAL

The air-dried plant material was extracted with Et₂O-petrol (1:2) and the resulting extracts were separated by CC (Si gel) and by TLC (Si gel). Known compounds were identified by comparing their IR and ¹H NMR spectra with those of authentic material.

Table 1. ¹H NMR spectral data of compound 1 (TMS as internal standard, 270 MHz)

	C_6D_6	CDCl ₃	$+ \operatorname{Eu}(\operatorname{fod})_3^*$
H-1)		2.50 ddd	3.30 ddd
H-3			4.44 ddd
H-3' }	$2.6-2.2 \ m$	2.60 m	4.22 dd
H-4		2.6-2.4 m	3.86 br.dd
H-4'			3.23 br.dd
H-7	5.68 br.t	6.13 br.t	7.78 br.t
H-8	2.3 m	2.40 ddd	3.38 ddd
H-8'	1.73 ddd	2.10 ddd	2.73 ddd
H-9	1.52 br.dd	1.64 ddd	2.36 dd
H-10)	1.65	1.80 dd	2.03 dd
H-10'	1.65 m	1.68 dd	1.96 dd
H-12	4.87 br.s	4.86 br.s	5.22 br.s
H-12'	4.74 br.s	4.71 br.s	5.00 br.s
H-13	0.86 s	1.02 s	1.24 s
H-14	$0.82 \ s$	0.99 s	1.12 s
H-15	4.79 br.d	4.82 br.d	9.68 br.d
H-15'	4.48 d	4.56 d	9.46 br.d
OAc	1.65 s	2.05 s	5.31 s

^{* 400} MHz.

^{*}Part 334 in the series "Naturally Occurring Terpene Derivatives". For Part 333 see Bohlmann, F. and Gupta, R. K. (1981) Phytochemistry 20, 1432.

J (Hz): 1,9 = 10; 1,10 = 8; 1,10' = 10; 3,3' = 13; 3,4 ~ 4; 3,4' = 10; 3',4 = 10; 3',4' ~ 4; 4,4' = 13; 7,8 = 8; 8,8' = 15; 8,9 = 10; 8',9 = 2; 10,10' = 10.5; 15,15' = 12.5.

1426 Short Reports

HO₂C
$$\frac{1}{3}$$
 $\frac{1}{10}$ $\frac{1$

6

Fleischmannia pycnocephaloides (voucher RMK 7272). The roots (30 g) afforded 6 mg sesamin, 5 mg lupeyl acetate, and 6 mg 1 (Et₂O-petrol, 1:3), while the aerial parts (65 g) gave 60 mg germacrene D, 10 mg lupeyl acetate and 18 mg (+)-abienol (2).

Fleischmannia multinervis (voucher RMK 7306). The roots (60 g) afforded 15 mg germacrene D, 8 mg 4 and 12 mg 5.

Fleischmannia deborabellae (voucher RMK 7346A). The roots (20 g) gave 5 mg p-hydroxybenzoic acid and the aerial parts (50 g) 30 mg 3.

Fleischmannia bohlmanniana (voucher RMK 7190). The roots (20 g) gave 1 mg coumarin and the aerial parts (45 g) yielded 10 mg germacrene, 5 mg lupeyl acetate and 5 mg unidentified triterpenes.

Fleischmannia pycnocephala (voucher RMK 7185). The aerial parts (40 g) afforded 8 mg 4 and 3 mg 6.

15-Acetoxy-5,6-dihydro-6,7-dehydrocaryophyllen-5-one (1). Colourless oil, IR $v_{\rm max}^{\rm CCl_1}$ cm $^{-1}$: 1740, 1230 (OAc), 1695 (C=CCO); MS m/z (rel. int.): 276.173 (M $^+$, 14) (C $_{17}$ H $_{24}$ O $_{3}$), 216 (M $_{27}$ H $_{24}$ O $_{3}$), 201 (216 $_{27}$ H $_{27}$), 173 (201 $_{27}$ CO, 44), 91 (C $_{7}$ H $_{7}^+$, 100).

$$[\alpha]_{24}^{\lambda} = \frac{589}{-11} \frac{578}{-12} \frac{546}{-15} \frac{436 \text{ nm}}{-23} (c = 0.11, \text{ CHCl}_3).$$

Acknowledgement — We thank the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- Robinson, H. and King, R. M. (1977) The Biology and Chemistry of the Compositae (Heywood, V. H., Harborne, J. B. and Turner, B. L., eds.) p. 458. Academic Press, London.
- 2. Bohlmann, F., Jakupovic, J. and Lonitz, M. (1977) Chem. Ber. 110, 301.
- Bohlmann, F., Zitzkowski, P., Suwita, A. and Fiedler, L. (1978) Phytochemistry 17, 2101.
- Bevan, C. W. L., Ekong, D. E. V. and Okogun, I. (1968) J. Chem. Soc. C 1063.
- 5. Anthonsen, T. (1969) Acta Chem. Scand. 23, 3605.